
Decision Making with a KGP Agent System

Jeremy Forth* — Kostas Stathis** — Francesca Toni*

*Department of Computing
Imperial College London

jforth@doc.ic.ac.uk
ft@doc.ic.ac.uk

**School of Informatics
City University London
kostas@soi.city.ac.uk

ABSTRACT. A human user is centrally involved in a Decision Support System (DSS) task,
whereas for an autonomous agent system, a user’s role is a more abstract notion of oversight
and approval. In this paper, we examine the potential integration of a multi-agent
architecture into a DSS. The motivation in this work is to utilise autonomous agent problem-
solvers within a suitable multi-agent framework in such a way as to realise and generalise the
capabilities of a DSS, while maintaining the DSS characteristic of significant user
involvement. The approach taken is to employ agents both as domain problem solvers as well
as to manage the interaction with the user as part of the semi-autonomous design. We
consider the construction of an agent-based DSS based upon the KGP model of agency and
detail how the design of a DSS may benefit from agent technology in general and KGP agents
in particular (and vice versa). A framework for agent-enhanced DSS is presented which is
more general than those presented previously. We show how the architectural framework
used for KGP agents can be specialised to realise enhanced DSS capabilities.

RÉSUMÉ. L’ensemble des.

KEYWORDS: Logic-based Agents, Decision Support Systems, KGP Model, Multi-agent Systems.

MOTS-CLÉS: un maximum de six mots significatifs doivent être isolés sous forme de mots-clés.

Journal of Décision Systems. Volume 13 – No. 1/2004, pages 1 to n

mailto:jforth@doc.ic.ac.uk
mailto:ft@doc.ic.ac.uk
mailto:kostas@soi.city.ac.uk

2 Journal of Décision Systems. Volume 13 – No. 1/2004

1. Agents in DSS - Introduction

Decision Support Systems (DSS) were originally formulated in works such as
those of (Morton 1971), (Keen et al. 1978), (Bonczek et al. 1980) and (Sprague et
al. 1982). In a typical role, the systems aid humans to make informed decisions for
problem-solving over a targeted domain by aggregating information from that
domain and performing data analysis according to various predefined numerical
models. Through simulations based on these models, projections may be made under
a range of hypothetical scenarios using varying assumptions.

A classical DSS system is comprised of a Dialog Generation and Management
System (DGMS), Database Management System (DMS), and a Model Base
Management System (MBMS). The paradigm of use is typically that of direct
manipulation of a passive system by a user. This system provides information in
support of a decision about an appropriate course of action to a user who will
assimilate the information and apply it in conjunction with their worldly expertise to
render a good result. The user is also expected to execute the chosen course of
action.

There is substantial variation to be found in the literature in the use of the term
“Decision Support System”. It may be used to refer alternatively to a classical DSS
as described above, or more generally to a group of information systems with a
capacity to support human decision making. In this latter more general use (Power
2002) has classified five different types of DSS: model driven (e.g. financial
models), communications driven (e.g. collaboration tools), data driven (e.g. daily
sales reports), document driven (e.g. digital library), and knowledge driven (e.g.
expert system).

General artificial intelligence capability has been recognised as valuable to
classical DSS, see for example (Radermacher 1994). A classical DSS may
accordingly be extended by the addition of logical reasoning capability such as that
found in an Expert System (Ignizio 1991). Domain-specific declarative knowledge
may be encoded in such a way that the raw output of the numerical models are
subjected to suitable filtering, interpretation and analysis before final considered
advice with supporting information is provided to the user. The user is no longer
required to possess all the domain expertise necessary for problem resolution. DSS
and Expert Systems thus integrate together very powerfully to automate a greater
portion of the full decision-making process, thereby reducing the demands that a
complex conventional DSS places on the user’s knowledge (Turban et al. 2006).

One of the shortcomings of Expert Systems was that disparate expertise
contained within individual systems’ knowledge bases could not be shared with one
another. A more recent, and more powerful paradigm currently prevalent in AI
research, the autonomous agent and multi-agent system (MAS), successfully
addressed some of these communicative shortcomings of Expert Systems. Possibly
as a result, MAS requires more consideration for suitable integration with DSS,

 3 Short title of article

however it arguably offers more opportunity, see (Angehrm 1993) and (Mora et al.
2003). Agents are designed to be autonomous problem-solvers, possibly
communicating with other agents and users, and are therefore equipped with
sufficient cognitive abilities to reason about a domain, make certain types of
decisions themselves, and perform the associated actions. They offer the potential to
automate a far wider part of the overall problem-solving task than was possible with
classical DSS or Expert System DSS. However, since agents can only approximate
the breadth or depth of expertise that humans bring to the activities of decision
making and problem-solving, human participation will always likely yield superior
results.

An autonomous agent setting usually considers the agent situated in an
environment over which it performs direct sensing and perception, and also
exercises direct control through the use of actions for the purposes of initiating
change. Although collaboration with other agents is a central feature of multi-agent
systems, the focus of design is on autonomy of the system, not particularly on
collaborating with human users. A typical example is the Retsina (Sycara et al.
1996) framework’s user interface agent, which receives a goal and task specification
from the user and presents results in return. This type of user involvement offers
little flexibility for maintaining a sufficiently rich dialog with the user. In traditional
agent system designs, the agent makes most decisions by itself, in contrast to a
classical DSS design where the human user drives the decision support tool (through
direct control of the system) and performs all decision-making. This is perhaps the
most pertinent difference between a MAS and a DSS.

One can view the DSS setting and agent setting as being on opposite extremes of
a continuum of collaborative decision-making between the system and its users:
representing direct manipulation versus oversight and approval respectively. The
contribution made to agent system design through consideration of a DSS setting is
therefore the introduction of a notion of rich bi-directional collaboration with the
user about the circumstances and choices arising during task execution. Agent
systems in turn contribute to DSS by providing autonomous problem-solving
capability and interaction with other agents. We believe a system designed to fit
midway in this continuum contains the most power for problem-solving in
organisational settings. The agent system and user are then assumed to work
together in collaborative problem-solving, each aware and appropriately responsive
to the other.

Incorporation of agents also offers the opportunity for the system to participate
directly in the implementation of decisions through the execution of actions directly
upon the domain. The planning capability of agents may directly generate multiple
decision-making alternatives for the user which are based on alternative specific
courses of action. An agent-enhanced knowledge-based DSS can therefore
potentially provide a more direct level of decision support when compared with
more classical DSS designs based on numerical analysis information, other indirect
indicators, and perhaps Expert Systems. A plan generated by an agent as a potential

4 Journal of Décision Systems. Volume 13 – No. 1/2004

decision alternative may describe physical actions to take, or alternatively describe
an organisational process. These two plan types differ in the level of abstraction of
actions. Physical actions are direct-acting on the domain, while organisational
planning actions usually require the construction of conditional plans (more akin to a
flowchart), and may be formulated from a plan library for standard subtasks. An
agent-based DSS may be used to achieve a specified outcome, maintain goals, detect
deviation conditions from these goals, generate restoration alternatives, and direct
pursuit of the remedy.

In this paper, we examine the potential integration of agent technology into a
framework of a semi-autonomous DSS. This is done in a way which preserves a
human user’s potential to contribute their high level skills, while still benefiting
from a high degree of automation in decision-making and the wider problem-solving
task. The paper explores some of the proposals presented in (Stathis et al. 2005) to
promote the views to a wider audience including DSS. In section 2 we present a
standard decision process. Section 3 defines how the capability of an agent may be
utilised in a DSS application, and also identifies alternative agent design
architectures suitable to underpin this. Section 4 describes the KGP agent and shows
how this particular agent design is used to realise DSS functionality. Specific
examples showing how this is achieved are given. Section 5 considers the properties
of decision making as realised in the KGP-DSS and considers the resulting overall
decision-making capability in comparison to other decision-making methodologies
found in the literature. Section 6 identifies interesting related work, and section 7
concludes.

2. Decision Making

Human decision making on behalf of organisations is distinct from decision
making on behalf of one’s self. Humans use their own decision making capability to
facilitate a shared organisational decision making process, and in the same way so
autonomous agents may apply their own autonomous decision making capability to
assist in a shared decision making process in which humans participate.

Shared decision making is typically a complex multi-stage process. There have
been many attempts to formalise the procedure, and it has been frequently noted,
e.g. (Mankins et al. 2006), that procedures of any kind are often not followed in
practice. For the purposes of analysing agent contributions to a decision making
process, it is important that we classify at least one process. For this purpose, we
will choose Simon’s model (Simon 1960) which is a very well accepted top level
description of decision making processes.

The model specifies the following main abstract stages of decision making:
intelligence, design, and choice. Also implicit in Simon’s decision stages is the final
stage of decision implementation. Table 1 shows this process arrangement with each
stage broken down into sub-tasks in a way compatible with those suggested in

 5 Short title of article

(Turban et al. 2006). Using this decision process, we will now proceed to discuss the
ways in which autonomous agents may be integrated with decision support system
design.

Decision Phase Sub Tasks
Intelligence - Goal formulation.

- Data collection.
- Problem decomposition.
- Approval and ownership.
- Problem statement and framing.

Design - Model selection.
- Formulating possible courses of action.
- Select suitable principles of choice.

Choice - Evaluate alternatives based on
principles of choice.

- Selection of the highest ranking
alternative.

Implementation - Carry out the course of action in the
environment.

Table 1. Decision making based on Simon’s model.

3. Alternative Agent-Based DSS Designs

3.1. Detailed Functionality

The overall cognitive capability present in an agent can be deployed in several
ways to realise effective problem-solving by the combined effort of the system and
user. A user may typically have high-level expertise about a situation while a system
may have detailed low-level domain knowledge. In typical use, a DSS supplies
information in support of a decision process performed by a user, while in agent
systems by contrast, the human user typically expresses a domain specific goal to
the agents without the opportunity of imparting all their high level expertise.
Therefore, in agent systems there is little opportunity for the system to benefit from
the user’s domain expertise, and insubstantial feedback pathway for the user to be
educated about any detailed specific difficulties encountered by the agent in
pursuing a particular solution.

This disconnect in the user’s feedback path in a standard agent system is solved
in the DSS setting where the system explains its decisions in a form useful to a high-
level-reasoning user. Agent resources must be specifically allocated to solve this
“user management” task.

6 Journal of Décision Systems. Volume 13 – No. 1/2004

Knowledge types represented by agent systems are also different to those from a
standard DSS setting. There is a environmental causality-based domain description
and there is a description of possible information sources. There is also a knowledge
base containing information about how users should be treated in general, and
particular knowledge about individual users. These descriptions may contain forms
of weaker knowledge, which is important for its part in the formation of conclusions
in the presence of incomplete information (where no conclusions could otherwise be
drawn), or to arbitrate among inconsistent conclusions. Weak knowledge may be
expressed as preference information for example. This may be used to model the
domain, or the user, and is one possible basis from which to support autonomous
decision-making.

3.1.1. Roles of a DSS Agent

When developing an agent based DSS, there is a choice over which of two possible
kinds of actors, the user or domain agent, will execute the chosen course of action,
and which type of actions the agents will perform in the environment. An agent, for
instance, cannot go to the theatre, but it could book a ticket. Clearly, information
acquisition actions in pursuit of knowledge goals, and communicative actions in
reaction to environmental changes are less invasive than direct-effect causation
actions in pursuit of the user’s goals. The greater the extent of an agent’s role in the
execution of the solution, the further the design departs from the classical DSS
setting (as outlined previously) and the more general the design becomes.

DSS Function Agent Function
Data collection Knowledge acquisition and

assimilation.
Model creation Perception and knowledge

representation.
Alternative case
creation

Planning and
reactivity.

Choice Action selection.
Implementation Action execution.

Table 2. Mapping DSS functions to Agent capabilities.

Table 2 shows one particular way functions of a DSS may be realised as an agent
based design. As a constituent part of problem-solving in the domain, an agent may
choose particular sources of information to use. Data Gathering may be a function
within an agent (sensing), or a dedicated activity of a specialised information agent
if the task is complex. Model creation and maintenance is performed continuously
by an agent by a combination of its precepts and knowledge assimilation through

 7 Short title of article

belief revision. The goal is to always maintain an accurate model of the domain for
the purposes of the class of tasks to be performed. Creating alternative courses of
action is part of agent problem-solving realised by planning and reactivity. Agents
reason about goals, sub-goals, and actions that realise those goals. Once created,
these alternatives can be arbitrated among either by the agent itself, or alternatively
through communication with another agent or with the user who then makes the
final selection choice.

3.1.2. User Management and Domain Roles

Communication with the user is maintained by an agent fulfilling the role of
User Management. We call this agent the User Management Agent (UMA) because
its objectives are to manage how the user understands the system’s activity and how
the system understands the user. Consequently, this role is a superset of the more
usual interface agent found in agent system designs. Communication between the
two actors (user and system), pursuing collaborative problem-solving is possible
with respect to plans of action (generated by the system or user), and factual
statements, in addition to the more usual model-based analysis. Typically the user
manager would perform communication with the user about alternative possible
courses of action and their known consequences, seek approval for courses of action
over which the user may be sensitive, and accept or clarify user directives. This may
occur as a reaction to opportunities and risks occurring in the domain, or be driven
by proactive requests made to the user. As a communicating device, the user
manager may also facilitate contact between various interested parties. Example
goals for the user management agent are:

– user is aware of plausible alternatives;

– user understands the fundamental domain structure;

– user understands consequences of following a selected course of action;

– user has been notified and has accepted the execution of actions known by the
system to have wide ranging effects, or to be sensitive;

– user has been informed of unexpected opportunities or problems encountered.

The Domain Agent (DA) situated problem solver is ideally placed to generate
new options based on its declarative knowledge base, optionally augmented with
numerical models. Using this understanding of the domain, it can enumerate
alternative courses of action along with relevant known consequences, whether the
choices originated with the user or another agent. Justification for a choice is given
by detailing the objectives (goals), pertinent to the user, potentially conflicting
consequences, and general information in support of the choice. In this way, the user
is informed about what is at issue only if it is likely to be of importance.

8 Journal of Décision Systems. Volume 13 – No. 1/2004

Proposals are communicated and justified on the basis of decision-making
occurring about the user on the basis of a user model. The system is expected to
maintain a user model, and this may be (partly) realised as a user preference model.
This model determines what to bring to the user’s attention, so that the user is solely
informed by relevant and important facts. The system is thus engaged in an act of
“managing up” to the user. This entails the agent taking active responsibility for the
user’s proper involvement. The effectors of user management agents are user
interface modifiers in the form of communication mechanisms for information
presentation. These may manage multiple users though broadcasting, and
individuals through dialogs. We assume that agent-user interaction dialogs conform
to well-specified protocols (Pitt et al. 1999) like those specified by standards bodies
such as (FIPA 2002).

These protocols are instantiated to be suitable for conducting a conversation for
guiding a decision-making process. They will accordingly define the decision-
making purpose of each exchange. This will include provision for a user to state a
“goal” for which a decision over a plan of action is required, and identify the
potential actions that are the subject of the conversation. A user may “request”
potential alternatives, ask the agent to “justify” a solution, modify a single
component part of a candidate solution: “use alternative”, or “accept plan” of action
for partial or fully automated implementation. We further assume that the
conversation will refer to a domain specific ontology defining the common terms
used in the application domain (e.g. a user’s goal might refer to a book whose
properties include an author, a title, and ISBN number, all of which must be
provided for in the ontology).

The problem domain will also contain its own constraints, for example, a book
may not have the same ISBN number as a different book. Solutions respecting these
constraints must then in turn interact with, and elicit, the user’s latent preferences. It
is more effective to formulate solutions in this way because the user’s preferences
and wider goals can never be fully understood by the system. While the Domain
control function will know about some domain constraints beforehand, it will
discover more during the execution process. If considered important by the user
manager, these restrictions are then communicated to the user and allowed to
interact with the user’s own preferences through communication.

3.1.3. Decision Types

In general, classes of decision types may be differentiated by how a decision is
taken, what it is about and who takes the decision. Decisions taken by an agent in
the system can be differentiated according to whether they are about the domain, or
about the user, and whether they are subject to oversight from the user. Oversight
from the user must be specifically requested by the system. This depends in turn on

 9 Short title of article

decisions based on the user preference model describing the user’s sensitivities to
conditions occurring in the domain, and therefore when the user should be involved.

Decision Taken by Choices
Autonomous domain control DA Domain goals and

actions.
Approval decision UMA Decision maker: (UMA,

DA, user)
Alternative solution choice UMA Domain goals
User management decision UMA Status information
User decision User Domain Solutions

Table 3. Decision types.

There are five distinct types of decisions made by this agent-based DSS design
as shown in table 3. The first type of decision, the autonomous domain control
decision are those that determine the steps taken in attempts to reach a sub-goal in
the domain. These are taken directly by the domain controlling agent, on behalf of
themselves, and are internal and autonomous. An example instance is where a
domain agent selects one information source over another.

The second type of decision, the approval decision makes a choice about what
level of decision maker is appropriate for the choices pending. The three options are
as follows. The domain agent may take the decision using its domain expertise, the
user management agent may take the decision on behalf of the user, and lastly, the
user themselves may take the decision. Depending on the sensitivity of the
components of a solution, some parts of alternative solutions may be presented to
the user for approval or selection if it is considered significant enough by the user
manager. This decision, in effect, makes the choice about which decisions are made
internally to the system, and which are made externally.

The third type of decision is the alternative solution decision, made by the user
manager which takes lower importance decisions on behalf of the user on alternative
solutions reported by domain agents. This is possible because the user manager
knows much information about the user and their preferences. An example of this
type of decision is to autonomously select an earlier train time.

The fourth type of decision, the user management decision, determines how the
system will interact with the user. Depending on the agent’s knowledge of the user’s
preferences and responsibilities, the agent makes choices about what to bring to the
attention of the user. These are choices about how to “educate the user” about the
circumstances. An example of this is alerting the user to a promotional offer.
Another example is failure to achieve a desired user-goal. This condition may be
reported to the user if there are no other alternatives available (see section 4.4.3).

10 Journal of Décision Systems. Volume 13 – No. 1/2004

The final type of decision is the user decision. These occur after alternative
solutions have been presented to the user, and the user makes a selection. User
decisions can also be externally affected by a continuously changing environment
which may subsequently cause the user to change his mind, and as a result interrupt
a currently active alternative explored by the system. An example of this is the user
deciding to go to the theatre rather than the bookstore because of an advertisement
brought to the attention of the user after a prior decision to buy a book.

3.2. Agent Frameworks

Agents and multi-agent systems may be configured in a number of different
ways to realise the essential user management and domain control functions of a
DSS described earlier. These roles may be held by a single agent, though more
usually will be divided up among specialist multiple agents, each equipped with
information about different users and different domain components. A single agent
may function as a simple DSS providing it has sufficient resources to realise user
management and domain control simultaneously. As pointed out in (Matsatsinis et
al. 1999) the appropriate agent framework for a particular DSS depends on the
capabilities of each agent employed in the design.

Combined
Agent 1

Physical Domain

KGP
based
DSS

User 1

Figure 1. Single agent DSS where user management and domain problem-solving
are combined into one agent.

In cases where the agent design is powerful enough to undertake a user
management task and domain problem-solving task simultaneously, then the two
functions may be combined into one agent. In this case the agent is required to play

Short title of article 11

a composite role, that of the user manager and the domain problem solver
(Zambonelli et al. 2003). The agent’s internal representation distinguishes between
the knowledge required for the domain expertise and the knowledge required to
manage the user. Figure 1 shows a general-capability agent situated in a decision-
making domain where it takes the responsibility for domain control and user
management, thereby realising a simple DSS.

The usual adopted method for a MAS to interface with the user is to employ an
Interface Agent as a link between DAs and the user. Its role is typically limited to
receiving user instructions, involve appropriate task agents and display results
(Sycara et al. 1996), (Laurel 1990). A DSS realisation in the form of a MAS would
typically make use of a class of agents whose sole purpose is to collaborate with
human users. We have chosen to introduce the notion of a UMA which takes
responsibility for managing the user and the associated connection between the user
and DAs. This then allows domain agents to specialise in some selected area of
domain control (a particular advantage for large domains).

User

User Management
Agent

Domain
Agent 1

Physical Domain

KGP based DSS

Domain
Agent 2

Domain
Agent n

Figure 2. Separated responsibility Single User Framework where user management
and domain problem-solving are handled by different agents.

The simplest specialised architecture realising this functionality is shown in
Figure 2, where agent responsibility and expertise is partitioned according to
whether an agent has knowledge and responsibility for the domain of discourse, or
alternatively for the user (in terms of preferences and likely sensitivities).

12 Journal of Décision Systems. Volume 13 – No. 1/2004

Accordingly, DAs are assigned the role of controlling the domain (achieving a
desired outcome), whilst the UMAs are assigned the role of managing the user. In a
similar way as DAs meet a goal for the domain, the user management agent meets
user management goals.

The user management agent takes responsibility for maintaining a coherence of
context between the user and system. As well as the communication of simple task
specifications, goals and results between the user and system, as an Interface Agent
would do, the UMA implements the user management function. Its most important
task therefore is collaborative conflict resolution and solution formulation. The
UMA also communicates with other agents involved in problem solution. These
may be divided into specific domain roles such as domain information agent,
domain task agent, or domain controller, depending on the application.

Domain agents are the only agents to connect to the domain. They do so through
physical actuators such as motorised machines or network interfaces for electronic
domains. The limitations of Figure 2 are that it is a simple user architecture in the
sense that it does not permit multiple users to collaborate in solving a problem as is
typical in an organisational setting. Even if instantiated multiple times, Figure 2 only
collaborates between domain agents on the problem’s solution, it does not facilitate
user collaboration. Depending on the capability of the underlying agents, it is
possible to extend the architecture to allow a UMA representing one user to interact
with another UMA representing a second user.

User 2

Combined
Agent n

Combined
Agent 2

Combined
Agent 1

Physical Domain

KGP based DSS

User 1 User n

Figure 3. Combined responsibility Single Resource Framework with multiple agents
and users.

Short title of article 13

Figure 3 introduces this enhancement. Assuming the agents are powerful enough
to interleave cognitive tasks, then user management and domain controller functions
can be combined. The architecture is naturally able to support multiple agents
collaborating on domain tasks, while also allowing multiple users to collaborate with
the system. This architecture therefore represents the minimum design requirement
for use in an organisation.

User1

Physical Domain

KGP based DSS

Combined
Agent 1

Combined
Agent 2

Combined
Agent n

To user m

DSS
module m

Figure 4. Combined responsibility multi-resource framework where a user has a
cluster of dedicated agents for decision-making support.

Figure 4 is a more advanced multi-resource framework for DSS where each user
is allocated a cluster of dedicated agents each specialising, and each able to interact
with other agents, the environment and the user. This is suitable for larger multi
faceted problems containing many different aspects requiring multiple specialised
model types and where users typically cater to more than one goal of the overall
problem solution. The demands placed on each agent of Figure 4 are user
management, coordination between other user management agents and coordination
between other domain agents working on the same task, and others working on
related but different tasks.

4. Using KGP Agents for DSS Applications

We advocate a particular kind of agent in this work, built according to the
Knowledge-Goals-Plan (KGP) model of agency (Kakas et al. 2004). The KGP

14 Journal of Décision Systems. Volume 13 – No. 1/2004

model is a fully realised logic-based agent that has been demonstrated in a prototype
system. We explore the applicability of the KGP model for DSS, by illustrating how
KGP agents may be instantiated to bring the power of agency to a DSS application.
As shown in Figure 5, the basis of the KGP model is the knowledge of the agent.
This is accessed by a modular collection of capabilities that enable the agent to plan
or react, decide new goals, reason temporally and sense the environment in order to
check whether goals or (for cautious agents) the preconditions of actions in plans are
satisfied. Capabilities are synthesised in a collection of transitions that describe
how, given inputs from the environment, the internal state of the agent changes.
Changes of state may also occur by the agent observing either actively, in order to
test whether something in the environment holds, or passively, as a result of being
situated in a specific environment. Changes may also result because of the agent
choosing to execute actions, sense the environment, introduce new goals or plans,
revise these goals and plans, or simply react to changes in the environment. The
transitions are integrated within dynamic flexible cycle theories that specify
declaratively how the transitions are combined depending on the environment and
the required behavior profile of the agent.

4.1. The internal state of KGP Agents

The internal state of a KGP agent is a triple <KB, Goals, Plan>. The Knowledge
Base (KB) describes the knowledge of the agent of itself and its environment1. It
consists of separate modules supporting the different reasoning capabilities, for
example, KBplan contains knowledge that enables the agent to plan and KBGD
contains knowledge that enables the agent to decide which goals to adopt next. One
part of the KB, called KB0, holds the (dynamic) knowledge of the agent about its
external world, including what the agent has observed, the actions it has executed,
and communications it has received from other agents. We assume that KB0 is the
only part of the KB that changes over time.

The Goals of an agent is a set of properties that the agent has decided that it
wants (desires) to achieve at given times, within certain temporal intervals (specified
by temporal constraints). Goals are split into two types: mental goals, that can be
planned for by the agent, and sensing goals, that can only be sensed (to find out
from the environment whether they hold or not).

The Plan of an agent is a set of partially ordered (atomic) actions through which
the agent intends to satisfy its goals. Actions are split into three types: physical
actions, that the agent can execute to effect a change in the external world,
communicative actions, used by the agent to exchange information with other agents
(e.g. to make a request), and sensing actions, for obtaining information from the
environment. Actions are to be executed at given times, within temporal intervals

1 It is also possible to represent the beliefs about other agents, but this issue is
beyond the scope of this work.

Short title of article 15

specified by temporal constraints (as for goals). Note that actions are added to the
Plan via the capabilities of the agent, which we describe in the next section.

T RANSIT IONS CAPABILIT IES

Knowledge

CONT ROL

E
N
V
I
R
O
N
M
E
N
T

Identification
of Precondition

Sensing

Te m poral
Reasoning

Goal
Decision

Planning

Reactivity

Passive
Observat ion
Introduction

Act ive
Observation
Introduction

Sensing
Introduction

Goal
Introduction

Plan
Introduction

Reactivity

Action
Execution

Goal
Revision

Plan
Revision

CYCLE THEORY

Goals

Plan

KB0

KBreact

KBplan

KBGD

KBTR

Figure 5. The KGP model of agency and its components.

4.2. Capabilities

The KB part of the state of a KGP agent is accessed by a set of reasoning
capabilities that are specified in computational logic. These capabilities enable the
agent to perform different reasoning tasks, as described below.

– A Planning capability uses KBPlan and KB0 to generate partial plans, i.e. sets
of actions and (sub)goals, for a given set of goals. This allows the agent to be
adaptable to changes in the environment without wasting planning effort.

– An Identification of Preconditions capability uses KBPlan to identify the
preconditions for the successful execution of given actions. This capability is needed
for “cautious” agents, which might want to sense the environment prior to execution
of actions to make sure that the execution will be successful. In addition, by means
of this capability an agent may realise that the required preconditions of some
actions will never be satisfied, and thus those actions may be dropped from the
current Plan, thus allowing for the adaptability of agents.

– A Goal Decision capability uses KBGD and KB0 to determine the top-level
goals that the agent prefers to achieve under the current circumstances.

16 Journal of Décision Systems. Volume 13 – No. 1/2004

– A Temporal Reasoning capability (which is also used within some other
capabilities and components of the model) uses KBTR and enables the agent to
reason from observations stored in KB0 and make predictions about properties on
the basis of these observations. It plays a fundamental role in rendering the agent
adaptable to changes in its environment by dealing appropriately with partial
information, which evolves over time.

– A Reactivity capability allows the agent to react to changes in the external
environment. Reactivity uses KBreact and KB0 to identify which new actions and new
goals should be added to the current state of the agent in the light of the new
observations perceived in the environment.

– A Sensing capability allowing them to perceive the environment in which they
are situated.

The list above represents the foundational set of capabilities comprising a KGP
agent. These are then employed within transitions, which we describe next.

4.3. Transitions

Transitions are viewed as rules whose application changes the agent's internal
state, as outlined below.

– Passive Observation Introduction (POI) changes KB0 by introducing
unsolicited information coming from the environment or communications received
from other agents. Calls the Sensing capability.

– Active Observation Introduction (AOI) changes KB0 by introducing the
outcome of sensing actions for properties of interest to the agent; these properties
are actively sought. Calls the Sensing capability.

– Sensing Introduction (SI) transition adds to the current Plan new sensing
actions for sensing the preconditions of actions already in Plan, and uses the Sensing
capability.

– Plan Introduction (PI) changes part of the Goals and Plan of a state, according
to the output of the Planning capability. This transition uses also the Identification of
Preconditions capability, in order to equip each action A in the set As computed by
Planning, with the set of preconditions for the successful execution of A. However,
this does not necessarily mean that such preconditions will be checked at the time of
the execution of the actions.

– Goal Introduction (GI) changes the Goals of a state by replacing them with
goals that the Goal Decision capability decides to have highest priority.

– Reactivity (RE) is responsible for updating the current state of the agent by
adding the goals and actions returned by the Reactivity capability. As with PI, this
transition too uses the Identification of Preconditions capability, in order to equip

Short title of article 17

each action A in the set As computed by Reactivity, with the set of preconditions for
the successful execution of A.

– State Revision (SR) revises Goals and Plan, e.g. by dropping goals that have
already been achieved or that have run out of time and by dropping actions that have
already been executed successfully or that have run out of time, by using the
Temporal Reasoning capability and by checking the temporal constraints of the
goals and actions.

– Action Execution (AE) is responsible for executing all types of actions, thus
changing the KB0 part of KB by adding evidence that actions have been executed.
Calls the Sensing capability for the execution of sensing actions.

The operation of an agent is then given by the application of transitions in
sequences, which produce progressive changes over the state of the agent. In KGP
these sequences are not determined by a one-size-fits-all cycle of behaviour, as in
BDI architectures (Rao et al. 1995), but rather by reasoning with a flexible cycle
theory. Such a theory is sensitive to changes in the environment and the internal
state of an agent and at the same time provides a means of declarative and intelligent
control. Such declarative control allows the developer to build (behaviourally)
heterogeneous agents based on different cycle theories (Kakas et al. 2004).

4.4. KGP agents in a DSS context

We illustrate the usefulness and use of the KGP model for agent-based situated
decision support in the context of an e-shop, whereby KGP agents can provide
guidance and help to users that need to decide on purchasing books and theatre
tickets over the Internet. We will provide simple examples of the functioning of the
KGP model in this setting, focusing on a high-level description and abstracting away
many of the specific technicalities. The examples will be formulated by using
natural language, but this formulation maps naturally to a computational logic
representation (Stathis et al. 2005). We will make use of the KGP components
shown in Table 4 below.

Transitions Capabilities
Goal Introduction (GI) Goal Decision
Plan Introduction (PI) Planning
Reactivity (RE) Reactivity
Passive Observation Introduction (POI) Sensing
Action Execution (AE)

Table 4. KGP transitions and capabilities used in the example DSS context
provided in this section.

18 Journal of Décision Systems. Volume 13 – No. 1/2004

For simplicity, we will also abstract away from the cycle theory in the examples
that follow and focus on the knowledge representation and reasoning employed by
KGP.

4.4.1. Example 1: KGP Agents for e-shops

In this simple example we assume that a single KGP agent is assigned to support
a specific user or, more generally, a specific class of users in the context of e-shops
for books and theatre tickets. To support a specific user in such an application, an
agent must be in a position to generate goals relevant to the domain according to the
needs of the user. For this purpose we assume that the agent is developed to contain
user-specific domain knowledge for KBGD, for example:

Rule 1: the user prefers purchasing theatre tickets to purchasing books if
there is a theatre festival.

Rule 2: the user prefers purchasing books to purchasing theatre tickets.

Rule 3: the user likes to take advantage of any special offer, both for books
and theatre tickets.

Rule 4: Buying books is incompatible with buying theatre tickets.

This knowledge is used to reason about the current needs of the user, depending
on their current situation and the current state of the environment in which the user
is located.

To illustrate how this knowledge is utilised by the model, assume that at some
time the agent observes the environment by executing a POI transition at that time,
and that there is a special offer on some book b at some site s. Then, after executing
a GI transition, it would introduce the goal to inquire about the purchase of b from s
(referred to as goal g below). Indeed, Rule 3 in KBGD would force such a goal on the
agent. The POI transition might consist in reading an e-mail or in noticing a change
on the web page of the site having the special offer, via the agent's sensing
capability.

For the purposes of the example we will also assume that the agent has the
following knowledge in the Planning module KBplan of its KB:

Rule 5: In order to inquire about the purchase of a book b from site s, one
needs to find out the price p of b at s (referred to as action a1) and find out the
availability of b at s (referred to as action a2).

Short title of article 19

Moreover, we will suppose that the reactivity module of the agent's KBreact
contains the reactive rules:

Rule 6: If the agent has goal g and the price p of b is within the user's budget
and b is available at s, then notify the user about buying b for p at s.

Rule 7: If the user instructs the agent to buy a book from a site, then the agent
should go ahead and purchase such book.

Given this information, when the agent executes a PI transition, the goal g will
be equipped with a plan consisting of actions a1 and a2. Then, AE will execute these
actions (in sequence or in parallel). Suppose that the execution will instantiate p to
10 and confirm availability of b at site s. Then, by RE with reactive Rule 6 above,
assuming that the user's budget is 100, the agent will generate the further action a3 to
notify the user, and AE will perform the actual notification by executing a3.

Assuming at this stage that the agent observes, via POI, that the user is happy
with the purchase and is instructing the agent to perform it, then, via RE with
reactive Rule 7 above, the agent will introduce action a4 to purchase b at p from s,
and via AE the agent will perform the purchase on behalf of the user. Note that the
user might decide instead to not purchase the book or to purchase it autonomously.
It can notify the agent of its decision and the agent can take this into account by
storing it in KB0 and by reasoning on this information. Thus, KGP agents can aid
decision-making, but not be responsible for taking all decisions on behalf of users.

Note that in more complex examples, plans might be hierarchically structured
and some of the decisions might actually correspond to complex plans rather than
directly to actions as in the example above. Moreover, in a more complex context,
actions a1 and a2 above might actually stand for meta-actions that need sequences of
lower-level actions to be executed. For example, they might require the provision of
a login name, a password etc. Yet in other settings, they might require partaking in
an auction.

4.4.2. Adding communication

This is a variant of the earlier example showing how multiple KGP agents,
aiding decisions for different users, might need to interact with one another. The
setting is the same as for example 1, but here, the user’s KGP agent U1 needs to
check with the KGP agent U2 of another user (or example, the agent of another
member of the user’s family) in order to find out whether there are any plans to
purchase the same book of interest. Indeed, in this example, U1 also contains in its

20 Journal of Décision Systems. Volume 13 – No. 1/2004

KBplan the provision that it needs to communicate with U2 before checking the
chosen site and thus proposing the book to the user.

4.4.3. Example 3: Taking decisions about the user

This example demonstrates joint decision-making, critiquing and taking
decisions about the user. In the previous examples, the system took decisions about
the domain on behalf of the user. This example demonstrates the KGP agent taking
decisions about the user by making choices about which conditions the user is
alerted to in the course of solving an entertainment problem. It also shows simple
collaboration between the system and user in problem-solving. The agent KB
includes the previous rules 1, 2 and 3 in addition to the following defined rules.

Rule 8: if the user suggests a goal, then adopt as a user goal.

Rule 9: the user prefers Stacy’s over all other bookstores.

Rule 10: in order to fulfil a goal to buy a book, the agent needs to choose a
bookshop and then actually purchase the book from it.

Rule 8 would belong to KBGD and rule 9 to KBplan. After a goal request from the
user to buy a book for entertainment tonight, then using rule 8, the goal is adopted
(via the GI transition). Using rule 9 and 10, the plan to realise the goal buy a book is
created (via a PI transition): go to Stacy’s, purchase book.

Rule 11: visiting Stacy’s is incompatible with visiting the theatre.

Rule 12: there is a good theatre play

Rule 13: if a good theatre play is to be missed then inform user

If KBplan also contains rules 11 and 12, while KBreact contains 13, then, if the
earlier plan is followed, then there is a consequence that a good theatre play will be
missed. It is considered important to inform the user about this, because the user’s
preferences have been violated. Therefore using rules 1, 2, 3, 11, 12 and 13, by RE,
the agent decides to inform the user of the consequence: you will miss a good
theatre play.

Rule 14: if the user rejects an alternative, then search for more solutions.

Short title of article 21

The user may then use their world expertise to advise the system, to look for an
alternative to the action “go to Stacy’s bookstore”. By rule 14’s initiative,
interrogating external databases, the system found a solution meeting both goals: go
to Stan’s, buy book, go to theatre.

5. Decision Making Processes based on KGP Agents

In this section we recap in more detail how the use of the KGP model supports
agent decision making, as well as how multiple agents can support decision-making
processes. As discussed in section 2, (Fischhoff 1986) and (Yates 2003), “deciding”
involves many complex cognitive notions. We believe a model of agency should be
specifically engineered to support this challenging type of application. In this section
we interpret some of these notions in KGP terms and discuss the implications the
interpretation has on the design, specification, and implementation of decision-
making multi-agent systems.

5.1. Decisions in KGP

In the KGP model, a decision process is modelled at the level of cycle theory. A
decision process in KGP is then an application of a sequence of transitions that will
result in the generation of either a new set of goals (using GI), a new set of actions
(a plan) for an existing goal (using PI), or a new set of actions by reaction to an
incoming observation (using RE). These transitions will typically be followed in the
cycle theory by the execution of one or more of the actions (using AE). Prior to the
execution of the first action, there is a sequence of transitions defined in the cycle
theory that update internal structures and record information relevant to the decision.
The cycle theory therefore results in a complex sequence of events closely mirroring
the three step decision process ending in the “moment of choice” as described in
(Hoffman et al. 2005). Repeated application of transitions will in turn deal with
further decomposed goals or lower-level decisions, if required.

There are a number of observations that can be made for the above cognitive
interpretation of decisions. Firstly, deciding in the KGP model involves instantiating
either goals using the goal decision knowledge base (KBGD) or plans for specific
existing goals. Secondly, chosen actions are intended to bring about states of affairs
that serve the interests and preferences of particular agents, including one’s self
(Yates et al. 2006). Thirdly, commitment to act according to a given goal subject to
planning activity in KGP is distinguished from the execution of the action. This
distinction is apparent when not all candidate actions are executed, as happens when
an action of a plan remains in the knowledge base of the agent, but has timed-out.
While the cognitive view of decision representation in KGP still accurately reflects
the internal representation, it has the additional advantage that decisions can be
justified in high-level, user terms, when necessary.

22 Journal of Décision Systems. Volume 13 – No. 1/2004

5.2. Cardinal Issues for the Decision Making Process

A decision-making process involving multiple agents and users can be very rich,
therefore we focus our discussion on the cardinal factors identified and elaborated in
section 2, (Yates 2003), and (Yates et al. 2006). We particularly argue that these
factors complement the KGP’s underlying decision making architecture by
suggesting ways in which the various KBs of KGP agents should be programmed.

The first factor is the need to decide. This addresses the question of why we are
(or not) deciding anything at all. Needs can be represented internally in the
knowledge of an agent, in particular as conditions in KBGD or KBRE rules. These in
turn generate new goals and plans, and as a result lead to the execution of actions.
Needs can also be extracted from observing the environment and may act as triggers
to rules about goals and actions. This may further identify threats and opportunities,
first for the agent itself, or for other agents, and in particular, the user whose
interests the agent is aiming to support. Some needs can be represented with
straightforward logical rules, however for others, the agent might need to analyse a
situation using more traditional decision theoretic techniques to identify whether
there is a significant decision problem to solve in the first place.

The second factor is the mode of the decision, viz. who must decide and how. To
identify circumstances where there is need for a decision is insufficient. KGP agents
must be programmed with a model of authority structure for supporting the
decisions for a specific task within a multi-agent DSS. This includes seeking the
opinion of specifically selected other agents. In (Yates 2003) the authors argue that
seeking opinions from others is often useful between humans, but little is known
about how people evaluate and aggregate the feedback they receive. Using
communication of opinion, we can also address value, that is, how much other
agents care for a decision we need to take.

The third factor is generation of plausible options. In KGP, options are created as
a plan of actions, generated by plan introduction or reactivity. The actions are
selected to be a plausible subset of the actions the agent is capable of performing.
These are selected using an interpretation of KBplan and KBRE at a specific point in
time. Furthermore, the action selection function mechanism recognises that only a
subset of these plausible actions are best choices. This system implicitly
acknowledges that considering all possible options can be computationally wasteful.
KGP does not support the evaluation of all possible alternatives for a specific
interaction stage; this has to be programmed specially in the conditions of the rules.

All actions have payoffs and costs. KGP makes use of preference reasoning, as
present in KBGD theories, to allow agents to select actions compatible with their
preferences. However, trade-offs between preferences are complex, as are the
relations to external factors such as the acceptability of a decision to other agents,
and how the decision is to be implemented. The acceptability of decisions together

Short title of article 23

with factors of “judgement” require that the model be extended to cater for these
extended factors in a wider context.

5.3. Implementation of the Decision Making Process

Once we have taken a decision, it needs to be implemented. We have seen in
previous sections, in particular 4.1, that implementation of a decision is achieved
using the AE transition. This transition will implement a decision only if the
constraints of the action that implements the decision (e.g. time constraints) are
satisfied. For certain types of agents, such as careful agents, the preconditions of an
action will also be checked before the action is carried out. Commitment to act does
not necessarily have an action as its primary functionality. In some circumstances, a
decision might involve the successful implementation of a whole plan, with sub-
plans, representing sub-decisions. KGP allows complex decisions of this kind to be
implemented using the PI and AE. It can also interleave plan execution and
observation and can backtrack by exploring alternative sub-plans to achieve specific
decisions expressed in terms of goals.

We distinguish between implementing a decision that is a plan of an individual
agent from a plan that is agreed between many agents. KGP may be programmed to
have agents organised accordingly so that one agent decides the plan and the others
execute it. However, to fully realise this, we need to define communication
protocols for collective plan executions, including how individual agents will be
responsible for the achievement of the final result. This is the subject of future work.

6. Related Work

The Retsina agent architecture (Sycara et al. 1996) defines three type of agent
classes: interface agents, task agents and information agents. The principle role of
task agents is to formulate plans for problem solving. Information agents provide
access to heterogeneous collection of information sources. Interface agents provide a
bidirectional communication with the user, including collecting relevant information
to initiate a task, presenting results and explanations, asking the user for additional
information during problem solving, and asking for user confirmation or approval,
when considered appropriate. Retsina has been applied to aircraft maintenance
decision support (Shehory et al. 1999).

(Cuppari et al. 1999) uses multi-agency as a logical simulation tool to model
train traffic. The ability to query the logical model provides the information to
support decisions of a user. However, the system is not an agent-based DSS in the
sense that it participates in the user decision process. It is a conventional DSS using
a multi-agent logical simulation model of an environment to supply information to a
user’s decision process.

24 Journal of Décision Systems. Volume 13 – No. 1/2004

An alternative way for the system to participate in the decision process has been
realised by competing arguments in CAPSULE (Krause et al. 1995), (Fox et al.
1998) designed by the Imperial Cancer Research Fund. Each argument presents a
case for, or a case against a possible procedure. This is a very robust way of
conducting the required asymmetric communication with a user and thus interacts at
an appropriate level.

Although related to agent design for an application other than DSS, (Lee et al.
2004) makes use of user satisfaction feedback given in response to an agent’s
decisions to elicit a user’s preferences about wireless network access choices. The
agent also gives feedback to the user about critical (but hidden) parameters of
predicted interest. In related work, (Faratin et al. 2003) uses a Markov Decision
Process to dynamically model the user. The method is distinct from more standard
off-line preference elicitation methods in that it functions on-line incrementally
improving the model of the user.

 (Ossowski et al. 2004) creates a DSS containing a multi-agent model designed
for a traffic management domain. There are many methods suggested and
incorporated for handling the scalability required for larger domains. This
architecture identifies in finer detail the differing social roles of structured decision
making. It separates agents into six classes, comprising data agents, action
implementation agents, management agents, coordination facilitators, user interface
agents, and peripheral agents.

7. Discussion and Conclusion

This paper has analysed how autonomous problem solvers in the form of logic-
based agents, and KGP agents in particular, can contribute to a DSS that exhibits
enhanced capability over that normally found in a DSS. This enhancement is due to
agent design contributing situated and structured problem-solving functionality to
the DSS, such that it is able to dynamically synthesise tasks for information
extraction, problem analysis and solution creation. It may also proactively frame
decisions and conduct certain operations for the benefit of the user, without the need
for the user to be involved in every sub-step.

The KGP agent’s representation of preference information has been used as the
basis for autonomous decision-making about the domain, the decision process and
about the type of user interaction suitable for the circumstances. This enables a
KGP-DSS to aid a greater proportion of the user’s total problem-solving task.

This DSS application of agents has been revealed to be more sensitive to the
communication and collaboration capability of each agent compared to a more usual
multi-agent application. Part of the reason for this is that communication with a
high-level reasoner (a user) is more demanding than communicating with a peer
agent because it introduces substantial asymmetry and potential ambiguity into the

Short title of article 25

dialog. Some of the techniques employed to solve this problem for user and system
communication in the DSS application may be useful in multi-agent system design
in general, providing a richer communication dialog capability between agents.

The decision-making process model possible using KGP-DSS is more general
than the classical four step decision phase model of information acquisition,
interpretation and alternatives extraction, and selection of the chosen case followed
by decision implementation. However, it remains the subject of future research to
fully realise the extent of the opportunities available to aid decision-making by the
inclusion of rational agents.

There is also potential to generalise user collaboration by employing argument
between the system and user. It would then be possible for a user to attack
assumptions upon which a conclusion is based, or rebut a conclusion. Moreover, the
system may use an argument as a form of deliberate user education about the
circumstances of a decision.

8. Bibliography

Angehrm A. (1993), "Computers that Criticize You: Stimulus-Based Decision Support
Systems," Interfaces 23: 3-16.

Bonczek R.H., Holsapple C.W., Whinston A.B. (1980), "Future Directions for Developing
Decision Support Systems," Decision Sciences 11(1): 616-631.

Cuppari A., Guida P.L., Martelli M., Mascardi V., Zini F. (1999), An Agent-Based Prototype
for Freight Trains Traffic Management, Proc.~of FMERail Workshop 5, Toulouse,
France, Springer-Verlag.

Faratin P., Lee G., Wroclawski J., Parsons S. (2003), "Social User Agents for Dynamic
Access to Wireless Networks," Proceedings of AAAI Spring Symposium on Human
Interaction with Autonomous Systems in Complex Environments: 52-59.

FIPA (2002), "Interaction Protocol Specifications," http://www.fipa.org/repository/ips.php3.
Fischhoff B. (1986), Decision Making in Complex Systems, Intelligent Decision Support in

Process Environments, Springer-Verlag.
Fox J., Thomson R. (1998), "Decision support and disease management: a logic engineering

approach," IEEE Transactions on Information Technology in Biomedicine 2(4): 217-228.
Hoffman R., Yates J.F. (2005), "Decision(?) Making (?)," IEEE Intelligent Systems: 76-83.
Ignizio J.P. (1991), An Introduction To Expert Systems, McGraw-Hill.
Kakas A.C., Mancarella P., Sadri F., Stathis K., Toni F. (2004), The KGP model of Agency,

Proceedings of the 16th European Conference of Artificial Intelligence, Valencia.
Keen P.G.W., Scott-Morton M. (1978), Decision Support Systems: An Organisational View,

Reading, Mass, Addison-Wesley Publishing.
Krause P., Ambler S., Elvang-Goransson M., Fox J. (1995), "A Logic of Argumentation for

Reasoning under Uncertainty," Computational Intelligence 11: 113-131.
Laurel B. (1990), Interface Agents: Metaphors with Character, The Art of Human Computer

Interface Design, Addison-Wesley.
Lee G., Faratin P., Bauer S., Wroclawski J. (2004), "A User-Guided Cognitive Agent for

Network Service Selection in Pervasive Computing Environments," Second IEEE
International Conference on Pervasive Computing and Communications: 219.

Mankins M.C., Steele R. (2006), "Stop Making Plans; Start Making Decisions," Harvard
Business Review.

http://www.fipa.org/repository/ips.php3

26 Journal of Décision Systems. Volume 13 – No. 1/2004

Matsatsinis N., Moraitis P., Psomatakis V., Spanoudakis N. (1999), An Intelligent Software
Agent Framework for Decision Support Systems Development, European Symposium on
Intelligent Techniques (ESIT), Chania, Greece.

Mora M., Forgionne G., Gupta J., Cervantes F., Gelman O. (2003), A Framework to Assess
Intelligent Decision-Making Support Systems, Knowledge-Based Intelligent Information
and Engineering Systems, Springer.

Morton M.S. (1971), "Management Support Systems, Computer Based Support for Decision
Making," Division of Research, Harvard University, Cambridge Massachusetts.

Ossowski S., Cuena J., Kakas A., Mancarella P., Sadri F., Stathis K., Toni F. (2004),
Declarative Agent Control, Proceedings of the 5th International Workshop on
Computational Logic in Multi-agent Systems (CLIMA V), Lisbon.

Pitt J.V., Mamdani E.H. (1999), A Protocol-Based Semantics for an Agent Communication
Language, Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, Morgan Kaufmann.

Power D.J. (2002), Decision Support Systems: Concepts and Resources for Managers,
Quorum Books, Greenwood Publishing.

Radermacher F.J. (1994), "Decision Support Systems: Scope and Potential. Decision Support
Systems," Decision Support Systems 12(1): 257-265.

Rao A.S., Georgeff M. (1995), BDI Agents: from theory to practice, Proceedings of the 1st
International Conference on Multiagent Systems, San Francisco, CA.

Shehory O., Sycara K., Sukthankar G., Mukherjee V. (1999), Agent aided aircraft
maintenance, Proceedings of the Third International Conference on Autonomous Agents
(Agents'99), Seattle, WA, USA, ACM Press.

Simon H. (1960), The New Science of Management Decision, Harper & Row, New York.
Sprague R.H., Carlson E.D. (1982), Building Effective Decision Support Systems, Prentice-

Hall publishers.
Stathis K., Toni F. (2005), The KGP Model of Agency for Decision Making in e-Negotiation,

Proceedings of the Joint Workshop on Decision Support Systems, Experimental
Economics, and e-Participation, Graz, Austria.

Sycara K.P., Pannu A., Williamson M., Zeng D., Decker K. (1996), "Distributed Intelligent
Agents," IEEE Expert 11(6): 36-46.

Turban E., Aronson J.E., Liang T.-P. (2006), Decision Support Systems and Intelligent
Systems, Prentice Hall.

Yates J.F. (2003), Decision Management: How to Assure Better Decisions in your Company,
Jossey Bass.

Yates J.F., Tschirhart M.D. (2006), Decision Making Expertise, Cambridge handbook of
Expertise and Expert Performance, Ericsson K.A., Charness N., Feltovich P.J.Hoffman
R.R., Cambridge University Press.

Zambonelli F., Jennings N.R., Wooldridge M. (2003), "Developing Multiagent Systems: the
Gaia Methodology," ACM Transactions on Software Engineering and Methodology
12(3): 317-370.

