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ABSTRACT. A human user is centrally involved in a Decision Support System (DSS) task, 
whereas for an autonomous agent system, a user’s role is a more abstract notion of oversight 
and approval. In this paper, we examine the potential integration of a multi-agent 
architecture into a DSS. The motivation in this work is to utilise autonomous agent problem-
solvers within a suitable multi-agent framework in such a way as to realise and generalise the 
capabilities of a DSS, while maintaining the DSS characteristic of significant user 
involvement. The approach taken is to employ agents both as domain problem solvers as well 
as to manage the interaction with the user as part of the semi-autonomous design. We 
consider the construction of an agent-based DSS based upon the KGP model of agency and 
detail how the design of a DSS may benefit from agent technology in general and KGP agents 
in particular (and vice versa). A framework for agent-enhanced DSS is presented which is 
more general than those presented previously. We show how the architectural framework 
used for KGP agents can be specialised to realise enhanced DSS capabilities. 
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1. Agents in DSS - Introduction 

Decision Support Systems (DSS) were originally formulated in works such as 
those of (Morton 1971), (Keen et al. 1978), (Bonczek et al. 1980) and (Sprague et 
al. 1982). In a typical role, the systems aid humans to make informed decisions for 
problem-solving over a targeted domain by aggregating information from that 
domain and performing data analysis according to various predefined numerical 
models. Through simulations based on these models, projections may be made under 
a range of hypothetical scenarios using varying assumptions. 

A classical DSS system is comprised of a Dialog Generation and Management 
System (DGMS), Database Management System (DMS), and a Model Base 
Management System (MBMS). The paradigm of use is typically that of direct 
manipulation of a passive system by a user. This system provides information in 
support of a decision about an appropriate course of action to a user who will 
assimilate the information and apply it in conjunction with their worldly expertise to 
render a good result. The user is also expected to execute the chosen course of 
action. 

There is substantial variation to be found in the literature in the use of the term 
“Decision Support System”. It may be used to refer alternatively to a classical DSS 
as described above, or more generally to a group of information systems with a 
capacity to support human decision making. In this latter more general use (Power 
2002) has classified five different types of DSS: model driven (e.g. financial 
models), communications driven (e.g. collaboration tools), data driven (e.g. daily 
sales reports), document driven (e.g. digital library), and knowledge driven (e.g. 
expert system). 

General artificial intelligence capability has been recognised as valuable to 
classical DSS, see for example (Radermacher 1994). A classical DSS may 
accordingly be extended by the addition of logical reasoning capability such as that 
found in an Expert System (Ignizio 1991). Domain-specific declarative knowledge 
may be encoded in such a way that the raw output of the numerical models are 
subjected to suitable filtering, interpretation and analysis before final considered 
advice with supporting information is provided to the user. The user is no longer 
required to possess all the domain expertise necessary for problem resolution. DSS 
and Expert Systems thus integrate together very powerfully to automate a greater 
portion of the full decision-making process, thereby reducing the demands that a 
complex conventional DSS places on the user’s knowledge (Turban et al. 2006). 

One of the shortcomings of Expert Systems was that disparate expertise 
contained within individual systems’ knowledge bases could not be shared with one 
another. A more recent, and more powerful paradigm currently prevalent in AI 
research, the autonomous agent and multi-agent system (MAS), successfully 
addressed some of these communicative shortcomings of Expert Systems. Possibly 
as a result, MAS requires more consideration for suitable integration with DSS, 
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however it arguably offers more opportunity, see (Angehrm 1993) and (Mora et al. 
2003). Agents are designed to be autonomous problem-solvers, possibly 
communicating with other agents and users, and are therefore equipped with 
sufficient cognitive abilities to reason about a domain, make certain types of 
decisions themselves, and perform the associated actions. They offer the potential to 
automate a far wider part of the overall problem-solving task than was possible with 
classical DSS or Expert System DSS. However, since agents can only approximate 
the breadth or depth of expertise that humans bring to the activities of decision 
making and problem-solving, human participation will always likely yield superior 
results. 

An autonomous agent setting usually considers the agent situated in an 
environment over which it performs direct sensing and perception, and also 
exercises direct control through the use of actions for the purposes of initiating 
change. Although collaboration with other agents is a central feature of multi-agent 
systems, the focus of design is on autonomy of the system, not particularly on 
collaborating with human users. A typical example is the Retsina (Sycara et al. 
1996) framework’s user interface agent, which receives a goal and task specification 
from the user and presents results in return. This type of user involvement offers 
little flexibility for maintaining a sufficiently rich dialog with the user. In traditional 
agent system designs, the agent makes most decisions by itself, in contrast to a 
classical DSS design where the human user drives the decision support tool (through 
direct control of the system) and performs all decision-making. This is perhaps the 
most pertinent difference between a MAS and a DSS. 

One can view the DSS setting and agent setting as being on opposite extremes of 
a continuum of collaborative decision-making between the system and its users: 
representing direct manipulation versus oversight and approval respectively. The 
contribution made to agent system design through consideration of a DSS setting is 
therefore the introduction of a notion of rich bi-directional collaboration with the 
user about the circumstances and choices arising during task execution. Agent 
systems in turn contribute to DSS by providing autonomous problem-solving 
capability and interaction with other agents. We believe a system designed to fit 
midway in this continuum contains the most power for problem-solving in 
organisational settings. The agent system and user are then assumed to work 
together in collaborative problem-solving, each aware and appropriately responsive 
to the other. 

Incorporation of agents also offers the opportunity for the system to participate 
directly in the implementation of decisions through the execution of actions directly 
upon the domain. The planning capability of agents may directly generate multiple 
decision-making alternatives for the user which are based on alternative specific 
courses of action. An agent-enhanced knowledge-based DSS can therefore 
potentially provide a more direct level of decision support when compared with 
more classical DSS designs based on numerical analysis information, other indirect 
indicators, and perhaps Expert Systems. A plan generated by an agent as a potential 
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decision alternative may describe physical actions to take, or alternatively describe 
an organisational process. These two plan types differ in the level of abstraction of 
actions. Physical actions are direct-acting on the domain, while organisational 
planning actions usually require the construction of conditional plans (more akin to a 
flowchart), and may be formulated from a plan library for standard subtasks. An 
agent-based DSS may be used to achieve a specified outcome, maintain goals, detect 
deviation conditions from these goals, generate restoration alternatives, and direct 
pursuit of the remedy. 

In this paper, we examine the potential integration of agent technology into a 
framework of a semi-autonomous DSS. This is done in a way which preserves a 
human user’s potential to contribute their high level skills, while still benefiting 
from a high degree of automation in decision-making and the wider problem-solving 
task. The paper explores some of the proposals presented in (Stathis et al. 2005) to 
promote the views to a wider audience including DSS. In section 2 we present a 
standard decision process. Section 3 defines how the capability of an agent may be 
utilised in a DSS application, and also identifies alternative agent design 
architectures suitable to underpin this. Section 4 describes the KGP agent and shows 
how this particular agent design is used to realise DSS functionality. Specific 
examples showing how this is achieved are given. Section 5 considers the properties 
of decision making as realised in the KGP-DSS and considers the resulting overall 
decision-making capability in comparison to other decision-making methodologies 
found in the literature. Section 6 identifies interesting related work, and section 7 
concludes. 

2. Decision Making 

Human decision making on behalf of organisations is distinct from decision 
making on behalf of one’s self. Humans use their own decision making capability to 
facilitate a shared organisational decision making process, and in the same way so 
autonomous agents may apply their own autonomous decision making capability to 
assist in a shared decision making process in which humans participate. 

Shared decision making is typically a complex multi-stage process. There have 
been many attempts to formalise the procedure, and it has been frequently noted, 
e.g. (Mankins et al. 2006), that procedures of any kind are often not followed in 
practice. For the purposes of analysing agent contributions to a decision making 
process, it is important that we classify at least one process. For this purpose, we 
will choose Simon’s model (Simon 1960) which is a very well accepted top level 
description of decision making processes. 

The model specifies the following main abstract stages of decision making: 
intelligence, design, and choice. Also implicit in Simon’s decision stages is the final 
stage of decision implementation. Table 1 shows this process arrangement with each 
stage broken down into sub-tasks in a way compatible with those suggested in 
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(Turban et al. 2006). Using this decision process, we will now proceed to discuss the 
ways in which autonomous agents may be integrated with decision support system 
design. 

Decision Phase Sub Tasks 
Intelligence - Goal formulation. 

- Data collection. 
- Problem decomposition. 
- Approval and ownership. 
- Problem statement and framing. 

Design - Model selection. 
- Formulating possible courses of action. 
- Select suitable principles of choice. 

Choice - Evaluate alternatives based on 
principles of choice. 

- Selection of the highest ranking 
alternative. 

Implementation - Carry out the course of action in the 
environment. 

Table 1. Decision making based on Simon’s model. 

3. Alternative Agent-Based DSS Designs 

3.1. Detailed Functionality 

The overall cognitive capability present in an agent can be deployed in several 
ways to realise effective problem-solving by the combined effort of the system and 
user. A user may typically have high-level expertise about a situation while a system 
may have detailed low-level domain knowledge. In typical use, a DSS supplies 
information in support of a decision process performed by a user, while in agent 
systems by contrast, the human user typically expresses a domain specific goal to 
the agents without the opportunity of imparting all their high level expertise. 
Therefore, in agent systems there is little opportunity for the system to benefit from 
the user’s domain expertise, and insubstantial feedback pathway for the user to be 
educated about any detailed specific difficulties encountered by the agent in 
pursuing a particular solution. 

This disconnect in the user’s feedback path in a standard agent system is solved 
in the DSS setting where the system explains its decisions in a form useful to a high-
level-reasoning user. Agent resources must be specifically allocated to solve this 
“user management” task. 
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Knowledge types represented by agent systems are also different to those from a 
standard DSS setting. There is a environmental causality-based domain description 
and there is a description of possible information sources. There is also a knowledge 
base containing information about how users should be treated in general, and 
particular knowledge about individual users. These descriptions may contain forms 
of weaker knowledge, which is important for its part in the formation of conclusions 
in the presence of incomplete information (where no conclusions could otherwise be 
drawn), or to arbitrate among inconsistent conclusions. Weak knowledge may be 
expressed as preference information for example. This may be used to model the 
domain, or the user, and is one possible basis from which to support autonomous 
decision-making. 

3.1.1. Roles of a DSS Agent 

When developing an agent based DSS, there is a choice over which of two possible 
kinds of actors, the user or domain agent, will execute the chosen course of action, 
and which type of actions the agents will perform in the environment. An agent, for 
instance, cannot go to the theatre, but it could book a ticket. Clearly, information 
acquisition actions in pursuit of knowledge goals, and communicative actions in 
reaction to environmental changes are less invasive than direct-effect causation 
actions in pursuit of the user’s goals. The greater the extent of an agent’s role in the 
execution of the solution, the further the design departs from the classical DSS 
setting (as outlined previously) and the more general the design becomes. 

DSS Function Agent Function 
Data collection Knowledge acquisition and 

assimilation. 
Model creation Perception and knowledge 

representation. 
Alternative case 
creation 

Planning and 
reactivity. 

Choice Action selection. 
Implementation Action execution. 

Table 2. Mapping DSS functions to Agent capabilities. 

Table 2 shows one particular way functions of a DSS may be realised as an agent 
based design. As a constituent part of problem-solving in the domain, an agent may 
choose particular sources of information to use. Data Gathering may be a function 
within an agent (sensing), or a dedicated activity of a specialised information agent 
if the task is complex. Model creation and maintenance is performed continuously 
by an agent by a combination of its precepts and knowledge assimilation through 
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belief revision. The goal is to always maintain an accurate model of the domain for 
the purposes of the class of tasks to be performed. Creating alternative courses of 
action is part of agent problem-solving realised by planning and reactivity. Agents 
reason about goals, sub-goals, and actions that realise those goals. Once created, 
these alternatives can be arbitrated among either by the agent itself, or alternatively 
through communication with another agent or with the user who then makes the 
final selection choice. 

3.1.2. User Management and Domain Roles 

Communication with the user is maintained by an agent fulfilling the role of 
User Management. We call this agent the User Management Agent (UMA) because 
its objectives are to manage how the user understands the system’s activity and how 
the system understands the user. Consequently, this role is a superset of the more 
usual interface agent found in agent system designs. Communication between the 
two actors (user and system), pursuing collaborative problem-solving is possible 
with respect to plans of action (generated by the system or user), and factual 
statements, in addition to the more usual model-based analysis. Typically the user 
manager would perform communication with the user about alternative possible 
courses of action and their known consequences, seek approval for courses of action 
over which the user may be sensitive, and accept or clarify user directives. This may 
occur as a reaction to opportunities and risks occurring in the domain, or be driven 
by proactive requests made to the user. As a communicating device, the user 
manager may also facilitate contact between various interested parties. Example 
goals for the user management agent are: 

– user is aware of plausible alternatives; 

– user understands the fundamental domain structure; 

– user understands consequences of following a selected course of action; 

– user has been notified and has accepted the execution of actions known by the 
system to have wide ranging effects, or to be sensitive; 

– user has been informed of unexpected opportunities or problems encountered. 

The Domain Agent (DA) situated problem solver is ideally placed to generate 
new options based on its declarative knowledge base, optionally augmented with 
numerical models. Using this understanding of the domain, it can enumerate 
alternative courses of action along with relevant known consequences, whether the 
choices originated with the user or another agent. Justification for a choice is given 
by detailing the objectives (goals), pertinent to the user, potentially conflicting 
consequences, and general information in support of the choice. In this way, the user 
is informed about what is at issue only if it is likely to be of importance. 
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Proposals are communicated and justified on the basis of decision-making 
occurring about the user on the basis of a user model. The system is expected to 
maintain a user model, and this may be (partly) realised as a user preference model. 
This model determines what to bring to the user’s attention, so that the user is solely 
informed by relevant and important facts. The system is thus engaged in an act of 
“managing up” to the user. This entails the agent taking active responsibility for the 
user’s proper involvement. The effectors of user management agents are user 
interface modifiers in the form of communication mechanisms for information 
presentation. These may manage multiple users though broadcasting, and 
individuals through dialogs. We assume that agent-user interaction dialogs conform 
to well-specified protocols (Pitt et al. 1999) like those specified by standards bodies 
such as (FIPA 2002). 

These protocols are instantiated to be suitable for conducting a conversation for 
guiding a decision-making process. They will accordingly define the decision-
making purpose of each exchange. This will include provision for a user to state a 
“goal” for which a decision over a plan of action is required, and identify the 
potential actions that are the subject of the conversation. A user may “request” 
potential alternatives, ask the agent to “justify” a solution, modify a single 
component part of a candidate solution: “use alternative”, or “accept plan” of action 
for partial or fully automated implementation. We further assume that the 
conversation will refer to a domain specific ontology defining the common terms 
used in the application domain (e.g. a user’s goal might refer to a book whose 
properties include an author, a title, and ISBN number, all of which must be 
provided for in the ontology). 

The problem domain will also contain its own constraints, for example, a book 
may not have the same ISBN number as a different book. Solutions respecting these 
constraints must then in turn interact with, and elicit, the user’s latent preferences. It 
is more effective to formulate solutions in this way because the user’s preferences 
and wider goals can never be fully understood by the system. While the Domain 
control function will know about some domain constraints beforehand, it will 
discover more during the execution process. If considered important by the user 
manager, these restrictions are then communicated to the user and allowed to 
interact with the user’s own preferences through communication. 

3.1.3. Decision Types 

In general, classes of decision types may be differentiated by how a decision is 
taken, what it is about and who takes the decision. Decisions taken by an agent in 
the system can be differentiated according to whether they are about the domain, or 
about the user, and whether they are subject to oversight from the user. Oversight 
from the user must be specifically requested by the system. This depends in turn on 
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decisions based on the user preference model describing the user’s sensitivities to 
conditions occurring in the domain, and therefore when the user should be involved. 

Decision Taken by Choices 
Autonomous domain control DA Domain goals and 

actions. 
Approval decision UMA Decision maker: (UMA, 

DA, user) 
Alternative solution choice UMA Domain goals 
User management decision UMA Status information 
User decision User Domain Solutions 

Table 3. Decision types. 

There are five distinct types of decisions made by this agent-based DSS design 
as shown in table 3. The first type of decision, the autonomous domain control 
decision are those that determine the steps taken in attempts to reach a sub-goal in 
the domain. These are taken directly by the domain controlling agent, on behalf of 
themselves, and are internal and autonomous. An example instance is where a 
domain agent selects one information source over another. 

The second type of decision, the approval decision makes a choice about what 
level of decision maker is appropriate for the choices pending. The three options are 
as follows. The domain agent may take the decision using its domain expertise, the 
user management agent may take the decision on behalf of the user, and lastly, the 
user themselves may take the decision. Depending on the sensitivity of the 
components of a solution, some parts of alternative solutions may be presented to 
the user for approval or selection if it is considered significant enough by the user 
manager. This decision, in effect, makes the choice about which decisions are made 
internally to the system, and which are made externally. 

The third type of decision is the alternative solution decision, made by the user 
manager which takes lower importance decisions on behalf of the user on alternative 
solutions reported by domain agents. This is possible because the user manager 
knows much information about the user and their preferences. An example of this 
type of decision is to autonomously select an earlier train time. 

The fourth type of decision, the user management decision, determines how the 
system will interact with the user. Depending on the agent’s knowledge of the user’s 
preferences and responsibilities, the agent makes choices about what to bring to the 
attention of the user. These are choices about how to “educate the user” about the 
circumstances. An example of this is alerting the user to a promotional offer. 
Another example is failure to achieve a desired user-goal. This condition may be 
reported to the user if there are no other alternatives available (see section 4.4.3). 
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The final type of decision is the user decision. These occur after alternative 
solutions have been presented to the user, and the user makes a selection. User 
decisions can also be externally affected by a continuously changing environment 
which may subsequently cause the user to change his mind, and as a result interrupt 
a currently active alternative explored by the system. An example of this is the user 
deciding to go to the theatre rather than the bookstore because of an advertisement 
brought to the attention of the user after a prior decision to buy a book. 

3.2. Agent Frameworks 

Agents and multi-agent systems may be configured in a number of different 
ways to realise the essential user management and domain control functions of a 
DSS described earlier. These roles may be held by a single agent, though more 
usually will be divided up among specialist multiple agents, each equipped with 
information about different users and different domain components. A single agent 
may function as a simple DSS providing it has sufficient resources to realise user 
management and domain control simultaneously. As pointed out in (Matsatsinis et 
al. 1999) the appropriate agent framework for a particular DSS depends on the 
capabilities of each agent employed in the design. 

Combined 
Agent 1 

Physical Domain 

KGP 
based 
DSS 

User 1 

Figure 1. Single agent DSS where user management and domain problem-solving 
are combined into one agent. 

In cases where the agent design is powerful enough to undertake a user 
management task and domain problem-solving task simultaneously, then the two 
functions may be combined into one agent. In this case the agent is required to play 
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a composite role, that of the user manager and the domain problem solver 
(Zambonelli et al. 2003). The agent’s internal representation distinguishes between 
the knowledge required for the domain expertise and the knowledge required to 
manage the user. Figure 1 shows a general-capability agent situated in a decision-
making domain where it takes the responsibility for domain control and user 
management, thereby realising a simple DSS. 

The usual adopted method for a MAS to interface with the user is to employ an 
Interface Agent as a link between DAs and the user. Its role is typically limited to 
receiving user instructions, involve appropriate task agents and display results 
(Sycara et al. 1996), (Laurel 1990). A DSS realisation in the form of a MAS would 
typically make use of a class of agents whose sole purpose is to collaborate with 
human users. We have chosen to introduce the notion of a UMA which takes 
responsibility for managing the user and the associated connection between the user 
and DAs. This then allows domain agents to specialise in some selected area of 
domain control (a particular advantage for large domains). 

User 

User Management
Agent 

Domain 
Agent 1 

Physical Domain 

KGP based DSS 

Domain 
Agent 2 

Domain 
Agent n 

Figure 2. Separated responsibility Single User Framework where user management 
and domain problem-solving are handled by different agents. 

The simplest specialised architecture realising this functionality is shown in 
Figure 2, where agent responsibility and expertise is partitioned according to 
whether an agent has knowledge and responsibility for the domain of discourse, or 
alternatively for the user (in terms of preferences and likely sensitivities). 
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Accordingly, DAs are assigned the role of controlling the domain (achieving a 
desired outcome), whilst the UMAs are assigned the role of managing the user. In a 
similar way as DAs meet a goal for the domain, the user management agent meets 
user management goals. 

The user management agent takes responsibility for maintaining a coherence of 
context between the user and system. As well as the communication of simple task 
specifications, goals and results between the user and system, as an Interface Agent 
would do, the UMA implements the user management function. Its most important 
task therefore is collaborative conflict resolution and solution formulation. The 
UMA also communicates with other agents involved in problem solution. These 
may be divided into specific domain roles such as domain information agent, 
domain task agent, or domain controller, depending on the application. 

Domain agents are the only agents to connect to the domain. They do so through 
physical actuators such as motorised machines or network interfaces for electronic 
domains. The limitations of Figure 2 are that it is a simple user architecture in the 
sense that it does not permit multiple users to collaborate in solving a problem as is 
typical in an organisational setting. Even if instantiated multiple times, Figure 2 only 
collaborates between domain agents on the problem’s solution, it does not facilitate 
user collaboration. Depending on the capability of the underlying agents, it is 
possible to extend the architecture to allow a UMA representing one user to interact 
with another UMA representing a second user. 

User 2 

Combined 
Agent n 

Combined 
Agent 2 

Combined 
Agent 1 

Physical Domain 

KGP based DSS 

User 1 User n 

Figure 3. Combined responsibility Single Resource Framework with multiple agents 
and users. 
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Figure 3 introduces this enhancement. Assuming the agents are powerful enough 
to interleave cognitive tasks, then user management and domain controller functions 
can be combined. The architecture is naturally able to support multiple agents 
collaborating on domain tasks, while also allowing multiple users to collaborate with 
the system. This architecture therefore represents the minimum design requirement 
for use in an organisation. 

User1 

Physical Domain 

KGP based DSS 

Combined 
Agent 1 

Combined 
Agent 2 

Combined 
Agent n 

To user m 

DSS 
module m 

Figure 4. Combined responsibility multi-resource framework where a user has a 
cluster of dedicated agents for decision-making support. 

Figure 4 is a more advanced multi-resource framework for DSS where each user 
is allocated a cluster of dedicated agents each specialising, and each able to interact 
with other agents, the environment and the user. This is suitable for larger multi
faceted problems containing many different aspects requiring multiple specialised 
model types and where users typically cater to more than one goal of the overall 
problem solution. The demands placed on each agent of Figure 4 are user 
management, coordination between other user management agents and coordination 
between other domain agents working on the same task, and others working on 
related but different tasks. 

4. Using KGP Agents for DSS Applications 

We advocate a particular kind of agent in this work, built according to the 
Knowledge-Goals-Plan (KGP) model of agency (Kakas et al. 2004). The KGP 
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model is a fully realised logic-based agent that has been demonstrated in a prototype 
system. We explore the applicability of the KGP model for DSS, by illustrating how 
KGP agents may be instantiated to bring the power of agency to a DSS application. 
As shown in Figure 5, the basis of the KGP model is the knowledge of the agent. 
This is accessed by a modular collection of capabilities that enable the agent to plan 
or react, decide new goals, reason temporally and sense the environment in order to 
check whether goals or (for cautious agents) the preconditions of actions in plans are 
satisfied. Capabilities are synthesised in a collection of transitions that describe 
how, given inputs from the environment, the internal state of the agent changes. 
Changes of state may also occur by the agent observing either actively, in order to 
test whether something in the environment holds, or passively, as a result of being 
situated in a specific environment. Changes may also result because of the agent 
choosing to execute actions, sense the environment, introduce new goals or plans, 
revise these goals and plans, or simply react to changes in the environment. The 
transitions are integrated within dynamic flexible cycle theories that specify 
declaratively how the transitions are combined depending on the environment and 
the required behavior profile of the agent. 

4.1. The internal state of KGP Agents 

The internal state of a KGP agent is a triple <KB, Goals, Plan>. The Knowledge 
Base (KB) describes the knowledge of the agent of itself and its environment1. It 
consists of separate modules supporting the different reasoning capabilities, for 
example, KBplan contains knowledge that enables the agent to plan and KBGD 
contains knowledge that enables the agent to decide which goals to adopt next. One 
part of the KB, called KB0, holds the (dynamic) knowledge of the agent about its 
external world, including what the agent has observed, the actions it has executed, 
and communications it has received from other agents. We assume that KB0 is the 
only part of the KB that changes over time. 

The Goals of an agent is a set of properties that the agent has decided that it 
wants (desires) to achieve at given times, within certain temporal intervals (specified 
by temporal constraints). Goals are split into two types: mental goals, that can be 
planned for by the agent, and sensing goals, that can only be sensed (to find out 
from the environment whether they hold or not). 

The Plan of an agent is a set of partially ordered (atomic) actions through which 
the agent intends to satisfy its goals. Actions are split into three types: physical 
actions, that the agent can execute to effect a change in the external world, 
communicative actions, used by the agent to exchange information with other agents 
(e.g. to make a request), and sensing actions, for obtaining information from the 
environment. Actions are to be executed at given times, within temporal intervals 

1 It is also possible to represent the beliefs about other agents, but this issue is 
beyond the scope of this work. 
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specified by temporal constraints (as for goals). Note that actions are added to the 
Plan via the capabilities of the agent, which we describe in the next section. 

T RANSIT IONS  CAPABILIT IES 

Knowledge 

CONT ROL 

E 
N 
V 
I 
R 
O 
N 
M 
E 
N 
T 

Identification 
of Precondition 

Sensing 

Te m poral 
Reasoning 

Goal 
Decision 

Planning 

Reactivity 

Passive 
Observat ion 
Introduction 

Act ive 
Observation 
Introduction 

Sensing 
Introduction 

Goal 
Introduction 

Plan 
Introduction 

Reactivity 

Action 
Execution 

Goal 
Revision 

Plan 
Revision 

CYCLE THEORY 

Goals 

Plan 

KB0 

KBreact 

KBplan 

KBGD 

KBTR 

Figure 5.  The KGP model of agency and its components. 

4.2. Capabilities 

The KB part of the state of a KGP agent is accessed by a set of reasoning 
capabilities that are specified in computational logic. These capabilities enable the 
agent to perform different reasoning tasks, as described below. 

– A Planning capability uses KBPlan and KB0 to generate partial plans, i.e. sets 
of actions and (sub)goals, for a given set of goals. This allows the agent to be 
adaptable to changes in the environment without wasting planning effort.  

– An Identification of Preconditions capability uses KBPlan to identify the 
preconditions for the successful execution of given actions. This capability is needed 
for “cautious” agents, which might want to sense the environment prior to execution 
of actions to make sure that the execution will be successful. In addition, by means 
of this capability an agent may realise that the required preconditions of some 
actions will never be satisfied, and thus those actions may be dropped from the 
current Plan, thus allowing for the adaptability of agents. 

– A Goal Decision capability uses KBGD and KB0 to determine the top-level 
goals that the agent prefers to achieve under the current circumstances.  
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– A Temporal Reasoning capability (which is also used within some other 
capabilities and components of the model) uses KBTR and enables the agent to 
reason from observations stored in KB0 and make predictions about properties on 
the basis of these observations. It plays a fundamental role in rendering the agent 
adaptable to changes in its environment by dealing appropriately with partial 
information, which evolves over time.  

– A Reactivity capability allows the agent to react to changes in the external 
environment. Reactivity uses KBreact and KB0 to identify which new actions and new 
goals should be added to the current state of the agent in the light of the new 
observations perceived in the environment. 

– A Sensing capability allowing them to perceive the environment in which they 
are situated. 

The list above represents the foundational set of capabilities comprising a KGP 
agent. These are then employed within transitions, which we describe next. 

4.3. Transitions 

Transitions are viewed as rules whose application changes the agent's internal 
state, as outlined below. 

– Passive Observation Introduction (POI) changes KB0 by introducing 
unsolicited information coming from the environment or communications received 
from other agents. Calls the Sensing capability. 

– Active Observation Introduction (AOI) changes KB0 by introducing the 
outcome of sensing actions for properties of interest to the agent; these properties 
are actively sought. Calls the Sensing capability. 

– Sensing Introduction (SI) transition adds to the current Plan new sensing 
actions for sensing the preconditions of actions already in Plan, and uses the Sensing 
capability. 

– Plan Introduction (PI) changes part of the Goals and Plan of a state, according 
to the output of the Planning capability. This transition uses also the Identification of 
Preconditions capability, in order to equip each action A in the set As computed by 
Planning, with the set of preconditions for the successful execution of A. However, 
this does not necessarily mean that such preconditions will be checked at the time of 
the execution of the actions. 

– Goal Introduction (GI) changes the Goals of a state by replacing them with 
goals that the Goal Decision capability decides to have highest priority. 

– Reactivity (RE) is responsible for updating the current state of the agent by 
adding the goals and actions returned by the Reactivity capability. As with PI, this 
transition too uses the Identification of Preconditions capability, in order to equip 
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each action A in the set As computed by Reactivity, with the set of preconditions for 
the successful execution of A. 

– State Revision (SR) revises Goals and Plan, e.g. by dropping goals that have 
already been achieved or that have run out of time and by dropping actions that have 
already been executed successfully or that have run out of time, by using the 
Temporal Reasoning capability and by checking the temporal constraints of the 
goals and actions. 

– Action Execution (AE) is responsible for executing all types of actions, thus 
changing the KB0 part of KB by adding evidence that actions have been executed. 
Calls the Sensing capability for the execution of sensing actions. 

The operation of an agent is then given by the application of transitions in 
sequences, which produce progressive changes over the state of the agent. In KGP 
these sequences are not determined by a one-size-fits-all cycle of behaviour, as in 
BDI architectures (Rao et al. 1995), but rather by reasoning with a flexible cycle 
theory. Such a theory is sensitive to changes in the environment and the internal 
state of an agent and at the same time provides a means of declarative and intelligent 
control. Such declarative control allows the developer to build (behaviourally) 
heterogeneous agents based on different cycle theories (Kakas et al. 2004). 

4.4. KGP agents in a DSS context 

We illustrate the usefulness and use of the KGP model for agent-based situated 
decision support in the context of an e-shop, whereby KGP agents can provide 
guidance and help to users that need to decide on purchasing books and theatre 
tickets over the Internet. We will provide simple examples of the functioning of the 
KGP model in this setting, focusing on a high-level description and abstracting away 
many of the specific technicalities. The examples will be formulated by using 
natural language, but this formulation maps naturally to a computational logic 
representation (Stathis et al. 2005). We will make use of the KGP components 
shown in Table 4 below. 

Transitions Capabilities 
Goal Introduction (GI) Goal Decision 
Plan Introduction (PI) Planning 
Reactivity (RE) Reactivity 
Passive Observation Introduction (POI) Sensing 
Action Execution (AE) 

Table 4. KGP transitions and capabilities used in the example DSS context 
provided in this section. 
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For simplicity, we will also abstract away from the cycle theory in the examples 
that follow and focus on the knowledge representation and reasoning employed by 
KGP. 

4.4.1. Example 1: KGP Agents for e-shops 

In this simple example we assume that a single KGP agent is assigned to support 
a specific user or, more generally, a specific class of users in the context of e-shops 
for books and theatre tickets. To support a specific user in such an application, an 
agent must be in a position to generate goals relevant to the domain according to the 
needs of the user. For this purpose we assume that the agent is developed to contain 
user-specific domain knowledge for KBGD, for example: 

Rule 1: the user prefers purchasing theatre tickets to purchasing books if 
there is a theatre festival. 

Rule 2: the user prefers purchasing books to purchasing theatre tickets. 

Rule 3: the user likes to take advantage of any special offer, both for books 
and theatre tickets. 

Rule 4: Buying books is incompatible with buying theatre tickets. 

This knowledge is used to reason about the current needs of the user, depending 
on their current situation and the current state of the environment in which the user 
is located. 

To illustrate how this knowledge is utilised by the model, assume that at some 
time the agent observes the environment by executing a POI transition at that time, 
and that there is a special offer on some book b at some site s. Then, after executing 
a GI transition, it would introduce the goal to inquire about the purchase of b from s 
(referred to as goal g below). Indeed, Rule 3 in KBGD would force such a goal on the 
agent. The POI transition might consist in reading an e-mail or in noticing a change 
on the web page of the site having the special offer, via the agent's sensing 
capability. 

For the purposes of the example we will also assume that the agent has the 
following knowledge in the Planning module KBplan of its KB:  

Rule 5: In order to inquire about the purchase of a book b from site s, one 
needs to find out the price p of b at s (referred to as action a1) and find out the 
availability of b at s (referred to as action a2). 
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Moreover, we will suppose that the reactivity module of the agent's KBreact 
contains the reactive rules: 

Rule 6: If the agent has goal g and the price p of b is within the user's budget 
and b is available at s, then notify the user about buying b for p at s. 

Rule 7: If the user instructs the agent to buy a book from a site, then the agent 
should go ahead and purchase such book. 

Given this information, when the agent executes a PI transition, the goal g will 
be equipped with a plan consisting of actions a1 and a2. Then, AE will execute these 
actions (in sequence or in parallel). Suppose that the execution will instantiate p to 
10 and confirm availability of b at site s. Then, by RE with reactive Rule 6 above, 
assuming that the user's budget is 100, the agent will generate the further action a3 to 
notify the user, and AE will perform the actual notification by executing a3. 

Assuming at this stage that the agent observes, via POI, that the user is happy 
with the purchase and is instructing the agent to perform it, then, via RE with 
reactive Rule 7 above, the agent will introduce action a4 to purchase b at p from s, 
and via AE the agent will perform the purchase on behalf of the user. Note that the 
user might decide instead to not purchase the book or to purchase it autonomously. 
It can notify the agent of its decision and the agent can take this into account by 
storing it in KB0 and by reasoning on this information. Thus, KGP agents can aid 
decision-making, but not be responsible for taking all decisions on behalf of users. 

Note that in more complex examples, plans might be hierarchically structured 
and some of the decisions might actually correspond to complex plans rather than 
directly to actions as in the example above. Moreover, in a more complex context, 
actions a1 and a2 above might actually stand for meta-actions that need sequences of 
lower-level actions to be executed. For example, they might require the provision of 
a login name, a password etc. Yet in other settings, they might require partaking in 
an auction.  

4.4.2. Adding communication 

This is a variant of the earlier example showing how multiple KGP agents, 
aiding decisions for different users, might need to interact with one another. The 
setting is the same as for example 1, but here, the user’s KGP agent U1 needs to 
check with the KGP agent U2 of another user (or example, the agent of another 
member of the user’s family) in order to find out whether there are any plans to 
purchase the same book of interest. Indeed, in this example, U1 also contains in its 
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KBplan the provision that it needs to communicate with U2 before checking the 
chosen site and thus proposing the book to the user. 

4.4.3. Example 3: Taking decisions about the user 

This example demonstrates joint decision-making, critiquing and taking 
decisions about the user. In the previous examples, the system took decisions about 
the domain on behalf of the user. This example demonstrates the KGP agent taking 
decisions about the user by making choices about which conditions the user is 
alerted to in the course of solving an entertainment problem. It also shows simple 
collaboration between the system and user in problem-solving. The agent KB 
includes the previous rules 1, 2 and 3 in addition to the following defined rules. 

Rule 8: if the user suggests a goal, then adopt as a user goal. 

Rule 9: the user prefers Stacy’s over all other bookstores. 

Rule 10: in order to fulfil a goal to buy a book, the agent needs to choose a 
bookshop and then actually purchase the book from it. 

Rule 8 would belong to KBGD and rule 9 to KBplan. After a goal request from the 
user to buy a book for entertainment tonight, then using rule 8, the goal is adopted 
(via the GI transition). Using rule 9 and 10, the plan to realise the goal buy a book is 
created (via a PI transition): go to Stacy’s, purchase book. 

Rule 11: visiting Stacy’s is incompatible with visiting the theatre. 

Rule 12: there is a good theatre play 

Rule 13: if a good theatre play is to be missed then inform user 

If KBplan also contains rules 11 and 12, while KBreact contains 13, then, if the 
earlier plan is followed, then there is a consequence that a good theatre play will be 
missed. It is considered important to inform the user about this, because the user’s 
preferences have been violated. Therefore using rules 1, 2, 3, 11, 12 and 13, by RE, 
the agent decides to inform the user of the consequence: you will miss a good 
theatre play. 

Rule 14: if the user rejects an alternative, then search for more solutions. 
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The user may then use their world expertise to advise the system, to look for an 
alternative to the action “go to Stacy’s bookstore”. By rule 14’s initiative, 
interrogating external databases, the system found a solution meeting both goals: go 
to Stan’s, buy book, go to theatre. 

5. Decision Making Processes based on KGP Agents 

In this section we recap in more detail how the use of the KGP model supports 
agent decision making, as well as how multiple agents can support decision-making 
processes. As discussed in section 2, (Fischhoff 1986) and (Yates 2003), “deciding” 
involves many complex cognitive notions. We believe a model of agency should be 
specifically engineered to support this challenging type of application. In this section 
we interpret some of these notions in KGP terms and discuss the implications the 
interpretation has on the design, specification, and implementation of decision-
making multi-agent systems. 

5.1. Decisions in KGP 

In the KGP model, a decision process is modelled at the level of cycle theory. A 
decision process in KGP is then an application of a sequence of transitions that will 
result in the generation of either a new set of goals (using GI), a new set of actions 
(a plan) for an existing goal (using PI), or a new set of actions by reaction to an 
incoming observation (using RE). These transitions will typically be followed in the 
cycle theory by the execution of one or more of the actions (using AE). Prior to the 
execution of the first action, there is a sequence of transitions defined in the cycle 
theory that update internal structures and record information relevant to the decision. 
The cycle theory therefore results in a complex sequence of events closely mirroring 
the three step decision process ending in the “moment of choice” as described in 
(Hoffman et al. 2005). Repeated application of transitions will in turn deal with 
further decomposed goals or lower-level decisions, if required. 

There are a number of observations that can be made for the above cognitive 
interpretation of decisions. Firstly, deciding in the KGP model involves instantiating 
either goals using the goal decision knowledge base (KBGD) or plans for specific 
existing goals. Secondly, chosen actions are intended to bring about states of affairs 
that serve the interests and preferences of particular agents, including one’s self 
(Yates et al. 2006). Thirdly, commitment to act according to a given goal subject to 
planning activity in KGP is distinguished from the execution of the action. This 
distinction is apparent when not all candidate actions are executed, as happens when 
an action of a plan remains in the knowledge base of the agent, but has timed-out. 
While the cognitive view of decision representation in KGP still accurately reflects 
the internal representation, it has the additional advantage that decisions can be 
justified in high-level, user terms, when necessary. 
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5.2. Cardinal Issues for the Decision Making Process 

A decision-making process involving multiple agents and users can be very rich, 
therefore we focus our discussion on the cardinal factors identified and elaborated in 
section 2, (Yates 2003), and (Yates et al. 2006). We particularly argue that these 
factors complement the KGP’s underlying decision making architecture by 
suggesting ways in which the various KBs of KGP agents should be programmed. 

The first factor is the need to decide. This addresses the question of why we are 
(or not) deciding anything at all. Needs can be represented internally in the 
knowledge of an agent, in particular as conditions in KBGD or KBRE rules. These in 
turn generate new goals and plans, and as a result lead to the execution of actions. 
Needs can also be extracted from observing the environment and may act as triggers 
to rules about goals and actions. This may further identify threats and opportunities, 
first for the agent itself, or for other agents, and in particular, the user whose 
interests the agent is aiming to support. Some needs can be represented with 
straightforward logical rules, however for others, the agent might need to analyse a 
situation using more traditional decision theoretic techniques to identify whether 
there is a significant decision problem to solve in the first place. 

The second factor is the mode of the decision, viz. who must decide and how. To 
identify circumstances where there is need for a decision is insufficient. KGP agents 
must be programmed with a model of authority structure for supporting the 
decisions for a specific task within a multi-agent DSS. This includes seeking the 
opinion of specifically selected other agents. In (Yates 2003) the authors argue that 
seeking opinions from others is often useful between humans, but little is known 
about how people evaluate and aggregate the feedback they receive. Using 
communication of opinion, we can also address value, that is, how much other 
agents care for a decision we need to take. 

The third factor is generation of plausible options. In KGP, options are created as 
a plan of actions, generated by plan introduction or reactivity. The actions are 
selected to be a plausible subset of the actions the agent is capable of performing. 
These are selected using an interpretation of KBplan and KBRE at a specific point in 
time. Furthermore, the action selection function mechanism recognises that only a 
subset of these plausible actions are best choices. This system implicitly 
acknowledges that considering all possible options can be computationally wasteful. 
KGP does not support the evaluation of all possible alternatives for a specific 
interaction stage; this has to be programmed specially in the conditions of the rules. 

All actions have payoffs and costs. KGP makes use of preference reasoning, as 
present in KBGD theories, to allow agents to select actions compatible with their 
preferences. However, trade-offs between preferences are complex, as are the 
relations to external factors such as the acceptability of a decision to other agents, 
and how the decision is to be implemented. The acceptability of decisions together 
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with factors of “judgement” require that the model be extended to cater for these 
extended factors in a wider context. 

5.3. Implementation of the Decision Making Process 

Once we have taken a decision, it needs to be implemented. We have seen in 
previous sections, in particular 4.1, that implementation of a decision is achieved 
using the AE transition. This transition will implement a decision only if the 
constraints of the action that implements the decision (e.g. time constraints) are 
satisfied. For certain types of agents, such as careful agents, the preconditions of an 
action will also be checked before the action is carried out. Commitment to act does 
not necessarily have an action as its primary functionality. In some circumstances, a 
decision might involve the successful implementation of a whole plan, with sub-
plans, representing sub-decisions. KGP allows complex decisions of this kind to be 
implemented using the PI and AE. It can also interleave plan execution and 
observation and can backtrack by exploring alternative sub-plans to achieve specific 
decisions expressed in terms of goals. 

We distinguish between implementing a decision that is a plan of an individual 
agent from a plan that is agreed between many agents. KGP may be programmed to 
have agents organised accordingly so that one agent decides the plan and the others 
execute it. However, to fully realise this, we need to define communication 
protocols for collective plan executions, including how individual agents will be 
responsible for the achievement of the final result. This is the subject of future work. 

6. Related Work 

The Retsina agent architecture (Sycara et al. 1996) defines three type of agent 
classes: interface agents, task agents and information agents. The principle role of 
task agents is to formulate plans for problem solving. Information agents provide 
access to heterogeneous collection of information sources. Interface agents provide a 
bidirectional communication with the user, including collecting relevant information 
to initiate a task, presenting results and explanations, asking the user for additional 
information during problem solving, and asking for user confirmation or approval, 
when considered appropriate. Retsina has been applied to aircraft maintenance 
decision support (Shehory et al. 1999). 

(Cuppari et al. 1999) uses multi-agency as a logical simulation tool to model 
train traffic. The ability to query the logical model provides the information to 
support decisions of a user. However, the system is not an agent-based DSS in the 
sense that it participates in the user decision process. It is a conventional DSS using 
a multi-agent logical simulation model of an environment to supply information to a 
user’s decision process. 
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An alternative way for the system to participate in the decision process has been 
realised by competing arguments in CAPSULE (Krause et al. 1995), (Fox et al. 
1998) designed by the Imperial Cancer Research Fund. Each argument presents a 
case for, or a case against a possible procedure. This is a very robust way of 
conducting the required asymmetric communication with a user and thus interacts at 
an appropriate level. 

Although related to agent design for an application other than DSS, (Lee et al. 
2004) makes use of user satisfaction feedback given in response to an agent’s 
decisions to elicit a user’s preferences about wireless network access choices. The 
agent also gives feedback to the user about critical (but hidden) parameters of 
predicted interest. In related work, (Faratin et al. 2003) uses a Markov Decision 
Process to dynamically model the user. The method is distinct from more standard 
off-line preference elicitation methods in that it functions on-line incrementally 
improving the model of the user. 

 (Ossowski et al. 2004) creates a DSS containing a multi-agent model designed 
for a traffic management domain. There are many methods suggested and 
incorporated for handling the scalability required for larger domains. This 
architecture identifies in finer detail the differing social roles of structured decision 
making. It separates agents into six classes, comprising data agents, action 
implementation agents, management agents, coordination facilitators, user interface 
agents, and peripheral agents. 

7. Discussion and Conclusion 

This paper has analysed how autonomous problem solvers in the form of logic-
based agents, and KGP agents in particular, can contribute to a DSS that exhibits 
enhanced capability over that normally found in a DSS. This enhancement is due to 
agent design contributing situated and structured problem-solving functionality to 
the DSS, such that it is able to dynamically synthesise tasks for information 
extraction, problem analysis and solution creation. It may also proactively frame 
decisions and conduct certain operations for the benefit of the user, without the need 
for the user to be involved in every sub-step. 

The KGP agent’s representation of preference information has been used as the 
basis for autonomous decision-making about the domain, the decision process and 
about the type of user interaction suitable for the circumstances. This enables a 
KGP-DSS to aid a greater proportion of the user’s total problem-solving task. 

This DSS application of agents has been revealed to be more sensitive to the 
communication and collaboration capability of each agent compared to a more usual 
multi-agent application. Part of the reason for this is that communication with a 
high-level reasoner (a user) is more demanding than communicating with a peer 
agent because it introduces substantial asymmetry and potential ambiguity into the 
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dialog. Some of the techniques employed to solve this problem for user and system 
communication in the DSS application may be useful in multi-agent system design 
in general, providing a richer communication dialog capability between agents. 

The decision-making process model possible using KGP-DSS is more general 
than the classical four step decision phase model of information acquisition, 
interpretation and alternatives extraction, and selection of the chosen case followed 
by decision implementation. However, it remains the subject of future research to 
fully realise the extent of the opportunities available to aid decision-making by the 
inclusion of rational agents. 

There is also potential to generalise user collaboration by employing argument 
between the system and user. It would then be possible for a user to attack 
assumptions upon which a conclusion is based, or rebut a conclusion. Moreover, the 
system may use an argument as a form of deliberate user education about the 
circumstances of a decision. 
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